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Introduction 

 Modern societies believe that cultural heritage buildings are landmarks 

of culture and diversity. They should last forever. This act of culture 

poses high demands to all because deterioration is intrinsic to life. 
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Introduction: Buildings that must live forever (I) 

Venice, 1902  Noto, 1996  
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Introduction: Buildings that must live forever (II) 

Cathedral 

of Porto 

T1 T2 

T3 

Bam Earthquake 
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Introduction: Buildings that must live forever (IV) 
 1755: One of the largest earthquakes in the world strikes Lisbon 

 (estimated magnitude 9.0) 

 Buildings lost but also movable heritage: 

 At the Trindade convent, various precious cult artefacts, organs and a large library 

 At the S. Domingos convent, several precious furniture, silver and gold artefacts, and 

several libraries with 15000 volumes in golden binding 

 At the S. Francisco monastery, all silver was melt and a library of 9000 volumes lost 

 At the Espírito Santo monastery, a precious diamond custody and the large library burnt. 

Carmo church ruins Earthquake, fire and tsunami 
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Recent Tests: Flexible Diaphragm (Non-Strengthened) 

 Rubble masonry wall 

 Full collapse 
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The Role of the Engineer 

 Rehabilitation and conservation of the built environment takes 

about 35% of the construction market in Europe, reaching 50% in 

several countries 

 “Conservation engineering” is difficult and requires a different 

approach and skills from those employed in designing new 

construction: 

 Complexity (scatter of properties, lack of original design elements / 

Non-conforming execution, deficient structural connections, load 

transfer…) 

 Different knowledge (materials, technologies, …) 

 Lack of education in regular engineering / architecture courses 

 Non-applicable codes 

 Advanced structural analysis tools have justification 
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Why “Conservation Engineering”? 

 Those involved in historic preservation must recognize the contribution of 

the engineer.  Often engineering advice seems to be regarded as 

something to be sought at the end of a project when all the decisions 

have been made, while it is clear that better solutions might have been 

available with an earlier engineering contribution. 

 Conservation engineering requires a different approach and different 

skills from those employed in designing new construction. Often historic 

fabric has been mutilated or destroyed by engineers who do not 

recognize this fact, with the approval of the authorities and other experts 

involved.  Moreover, even when conservation skills are employed, there 

are frequent attempts by regulating authorities and engineers to make 

historic structures conform to modern design codes. This is generally 

unacceptable because the codes were written with quite different forms of 

construction in mind, because it is unnecessary and because it can be 

very destructive of historic fabric. 
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Why “Conservation Engineering”? 
 The need to recognize the distinction between modern design and 

conservation is also of relevance in the context of engineers‟ fees. The 

usual fee calculation based on a percentage of the cost of the work 

specified is clearly inimical to best conservation practice, with the ideal is 

to avoid any structural intervention if possible.  Being able to recommend 

taking no action might actually involve more investigative work and hence 

more cost to the engineer than recommending some major intervention. 

 Modern intervention procedures require a thorough survey of the 

structure and an understanding of its history. Any heritage structure is the 

result of the original design and construction, any deliberate changes that 

have been made and the ravages of time and chance.  An engineer 

working on historical buildings must be aware that much of the effort in 

understanding their present state requires an attempt to understand the 

historical process. The engineer involved at the beginning of the process 

might not only have questions that can easily be answered by the 

archaeologist or architectural historian, but he might be also able to offer 

explanations for the data being uncovered. 
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Past understanding 

 
“Conservation” is warranted by the 

powerfulness of the intervention 
 

Blind confidence in modern materials 

and technologies 
 

Mistrust towards original or ancient 

materials and original resisting 

resources of the building 
 

The value of original / ancient structure 

and structural principles is not 

recognized 
 

The importance of previous studies is 

not fully recognize 
 

Significant negative experience 

accumulated 

Athens Charter (1931) 

Recommends the use of concrete and other modern material and techniques for restoration purposes. 

Added materials and components should be hidden to avoid altering the historical aspect of the 

building.  
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Modern understanding 

 
Respect  towards authenticity of the structure and 

structural principles governing its response 
 

Conservation should lye on knowledge and 

understanding of the nature of the structure and  

real causes of possible damage or alterations 
 

Minimal and respectful interventions  

(minimal, non-intrusive and reversible) 
 

Importance of previous study (comprising 

historical, material and structural aspects) 
 

The previous study and the intervention are 

multidisciplinary tasks requiring the cooperation of   

historians, architects, engineers, physicists,… 

Venice Charter (1964) 

Recommends the use of traditional or historical materials for stabilization or restoration. 

Suggests the use of modern materials / techniques for cases where it is not possible to 

stabilize or restore by means of traditional / historical techniques.  

 

It must be possible to distinguish new materials or components from the original ones. 
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Unfavorable properties of cement mortars: 

1. Brittleness and high strength 

2. Difficult to remove if needed 

3. Thermal expansion coefficient can be twice that 

of lime mortars and brick / stone 

4. Low porosity and especially the large amount of 

small pores (hinder water movement in masonry and 

cause damage due to the accumulation of moisture 

behind cement layers or to  evaporation and deposition 

of salts in adjacent stones or bricks)  

5. Soluble salts such as calcium sulphates and 

sodium salts are often present in cement 

mortar, and leach out over time. Lime mortar has a 

low efflorescence potential due to high chemical purity 

6. Lime mortar allows limited movement within the 

joints and can undergo autogeneous healing 

due to dissolution and precipitation processes 

7. Lime mortar is softer and more porous than 

masonry, acting as a sacrificial substrate where 

evaporation of water and associated decay from 

soluble salt crystallization can take place 
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Diagnosis and safety evaluation of the structure are two consecutive and related stages on the basis of which 

the effective need for and extent of treatment measures are determined. If these stages are performed 

incorrectly, the resulting decisions will be arbitrary: poor judgement may result in either conservative and 

therefore heavy-handed conservation measures or inadequate safety levels. 

THE PHASES OF THE STUDY 
    

  Diagnosis 

  

 

Safety evaluation 

 

 

Design of remedial measures 

 

   

Identify causes of damage and decay 

 

 

Determine acceptability of safety levels 

by analyzing present condition of  

structure and materials 

 

 

Lay-out repair or strengthening actions 

to ascertain the required safety 
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Methodology 

MONITORING                HISTORY 
 

 

 

  Conclusions on building condition and adequate remedial measures 

 STRUCTURAL ANALYSIS 

 
 

            INSPECTION 

PRESENT CONDITION 
   

EVIDENCE HYPOTHESES 

Model validation 
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The need of experimental knowledge 
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Survey and visual inspection 
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NDT & Identification 

Sonic tomography 
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(b) 

 
Measurements 



Institute for Sustainability and Innovation in Structural Engineering 

30 | Local and global models for seismic safety assessment Paulo B. Lourenço 

Monitoring 

Crack opening and tilting, Cathedral of Porto 
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Solving Engineering Problems & Definition of Practical Rules 

Settlements Vehicles 

Earthquakes 
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Remedial Measures 
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Education (I) 

Taylor and Francis, 

since 2007 

(4 numbers/year) 

Bath, 2008 

250 participants 

Padua, 2004 

350 participants 

Guimarães, 2001 

500 participants 

New Delhi, 2006 

300 participants 

Conference Series: Structural Analysis of 

Historical Constructions 

Wroclaw, 2012 

350 participants 

Shanghai, 2010 

250 participants 
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Education (II) 

 MSc Course: Structural Analysis of Monuments and 

      Historical Constructions: 150 students from 50 countries 

 

 

 

 

 

Six edition in 2012/2013 

secretariat@msc-sahc.org 

www.msc-sahc.org 
 

Grants for students: 
      Between 16.000 and 24.000 euro/year. 

      Available for Israeli students 

 

Grants for scholars: 

      1.200 euro/week 

mailto:secretariat@msc-sahc.org
mailto:secretariat@msc-sahc.org
mailto:secretariat@msc-sahc.org
http://www.msc-sahc.org/
http://www.msc-sahc.org/
http://www.msc-sahc.org/
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Education (III): Webpage 

www.isise.net 

www.civil.uminho.pt/masonry 
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The Role of 

Structural 

Analysis 
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Purpose and possibilities of numerical analysis 

 
 Role of structural analysis in the general study of an 

heritage structure 
 Contribution to diagnosis 

 Relationship with history, inspection and monitoring 

 Contribution to safety evaluation 

 Contribution to design / validation of intervention 

 Modeling 
 Nature and type of models  

 Construction of the model  

 Need for validation  

 Uncertainties linked to prognosis  

 Challenges posed by historical / heritage structures 

 Geometry, materials, actions and history  
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The role of structural analysis  

 

The model used in the structural analysis is usually a compromise between 

realism and cost 

 

The structural model must take into consideration and simulate all the 

aspects influencing the structural response, including:  

• Geometry and morphology: structural form, internal composition, 

connections between the structural elements, … 

• The material properties 

• The actions: mechanical, physical, chemical, … 

• Existing alterations and damage: cracks, constructional mistakes, 

disconnections, crushing, leanings, … 

• The interaction of the structure with the soil, except in the cases where it 

is judged to be irrelevant 
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No model does represent the full reality 

 

We need models to reduce reality to a limited number of hypothesis or 

concepts (and to work with them)  

  

We need models to predict responses from our concepts or hypothesis 

 

Models must be validated 

 

The possibilities of models are always limited, but models are our best guess  
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THE STRUCTURAL MODEL IS THE RECIPIENT 

OF OUR  HYPOTHESIS 

 

 

 (1) the fundamentals of the  description of the  

        mechanical / strength  response 

   

 (2) specific quantities related to material,  

      geometrical, morphological  properties   
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STRUCTURAL  

MODEL 

 

 

1ST PHASE 

 

PREDICTIONS 

 

ALLOWING  

COMPARISON 

& 

CALIBRATION  

2ND PHASE 

 

 

PREDICTIONS 

USED IN 

EVALUATION  
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CHALLENGE:  

 

Trying to comply with the principle of minimum intervention,  

while maintaining an acceptable level of risk 

 

 
 

 

 

 

Safety evaluation 
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1- LIMITED APPLICABILITY OF AVAILABLE CODES  

Codes prepared for the design of modern structures are often inappropriately 

applied to historic structures.  They are based in calculation approaches which may 

fail to recognize the real structural behaviour and safety condition of ancient 

constructions 

The enforcement of seismic and geotechnical codes, can lead to drastic and often 

unnecessary measures that fail to take into account the real structural behaviour 

 

2- SUBJECTIVITY AND UNCERTAINTY 

Any assessment of safety is affected by two types of uncertainties 

The uncertainty attached to data (actions, geometry, deformations, material 

properties…), used in the research. 

The difficulty of representing real phenomena in a precise way with an adequate 

mathematical model (models provide only a limited representation of reality). 

The subjective aspects involved in the study and evaluation of a historic building 

may lead to conclusions of uncertain reliability 

 

SAFETY EVALUATION: DIFFICULTIES 
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Modern legal codes and professional codes of practice adopt a conservative 

approach involving the application of safety factors to take into account the 

various uncertainties.  This is appropriate for new structures where safety can 

be increased with modest increases in member size and cost.  

 

However, such an approach is not appropriate in historic structures where 

requirements to improve the strength may lead to the loss of historic fabric or 

to changes in the original conception of the structure.  

 

A more flexible and broader approach, where calculations are not the only 

source of evaluation, needs to be adopted for historic structures to relate the 

remedial measures more clearly to the actual structural behaviour and to retain 

the principle of minimum intervention, avoiding in any case risks for the human 

life.  

 

It must be clear, therefore, that the architect or engineer charged with the safety 

evaluation of an historic building should not be legally obliged to base his 

decisions solely on the results of calculations because, as already noted, they 

can be unreliable and inappropriate.  

 

LEGAL ISSUES 
 



Institute for Sustainability and Innovation in Structural Engineering 

45 | Local and global models for seismic safety assessment Paulo B. Lourenço 

 

 

A more flexible and broader understanding, where calculations are not the only 

source of evaluation, needs to be adopted for historic structures, with aim at: 

 

 

The broader understanding consists of combining different approaches, each 

giving a separate contribution. Their combination will produce the best 

possible „verdict‟ based on the data available to us. 

 

 

 

 

SAFETY EVALUATION 

PROPOSED APPROACH 
 



Institute for Sustainability and Innovation in Structural Engineering 

46 | Local and global models for seismic safety assessment Paulo B. Lourenço 

SAFETY EVALUATION:   POSSIBLE APPROACHES 
 

HISTORICAL APPROACH 

Knowing from history  (True–scale experiment)  

 

QUALITATIVE APPROACH  

Inductive procedure (Comparing and extrapolating from other 

buildings) 

 

ANALYTICAL APPROACH  

Deductive procedure (Structural analysis) 

 

EXPERIMENTAL APPROACH  

(Experiments on individual components or the entire building) 
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Historical approach 

 

 

 

 

 

 

Knowing from history 

Full-scale / Real time experiment 

 

Knowing from the behaviour 

shown by the same  structure, or 

similar ones, in the occasion of 

historical actions 
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Qualitative approach  

 

Inductive procedure (Comparing and extrapolating from other 

buildings) 
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Analytical approach  

 

Deductive procedure (Structural analysis) 

 
 
 

 

Modelling & analyzing a structure to obtain quantitative 

predictions on the response subjected to different actions 



Institute for Sustainability and Innovation in Structural Engineering 

50 | Local and global models for seismic safety assessment Paulo B. Lourenço 

 

Experimental 

approach 

 

 

 

 

 

 

 

 

 

 

 
Experiments on  

the entire building or 

individual components 

 

Example: load tests in 

roof-slabs or vaults 
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In short… 

 

 Scientific approach 

 

 Combination of different sources and approaches 

 

 Methodological consistency  

 Using similar approaches for diagnosis, safety evaluation and design of intervention 

 

 Subjectivity is still possible 

 

 Importance of personal judgment 

 Recognize the need for experts and the value of  their personal judgment 
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What not to do (I)? 

The need to understand materials, structural 

arrangements and construction techniques 

from existing buildings 
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What not to do (II)? 

It is necessary to adopt adequate safety evaluation 

procedures (history, quantitative analysis, qualitative 

analysis, experimental analysis) 
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What is a 

masonry 

structural 

system? 
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Masonry Materials – Properties of Units and Mortar 

 Strong variability 
 

 Typical ancient masonry stones 
 Igneous – Granite (40 to 150 N/mm2) 

 Sedimentary – Limestone (10 to 100 N/mm2) 

 Metamorphic – Marble (30 to 150 N/m2) 

 Metamorphic– Schist (5 to 60 N/mm2) 

 Scatter in durability (In general stone is obtained from the upper part of 

the quarry = altered material) 
 

 Clay brick in ancient masonry 
 Thickness of 4 to 7 cm 

 Other dimensions are much variable (22 × 11 cm2???) 

 Large porosity (20-35 %) 

 Low strength (5 to 20 N/mm2) 

 Low durability (hand made; burnt in a traditional wood / coal kiln) 
 

 Adobe 
 Rather low strength (0.5 to 3 N/mm2) 
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Mortars 

 The use of mortar has the following purposes: 

• Bind the masonry units together 

• Reduce the effect of the irregularity of the units and make laying the 

units easier 

 Mortars take time to harden and are usually weaker than masonry units 

 Mortars can be made of mud, bitumen (Mesopotamia), gypsum (Egypt), 

(hydrated or aerial) lime, hydraulic lime and cement 

 

 Addition of pozzolana or brick dust allows to create hydraulic products 

(i.e. capable of hardening under the water) 

 It is usual that mortars contain silty soil (50 to 100% of the aggregate) 

 Dry masonry (i.e. without mortar) is also usual 
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WALLS 

 
Walls have several functional and structural roles: 

 

 to form an envelope to provide shelter from sight, wind, rain and 

temperature 

 to support the weight of floor and roof systems  

to provide in-plane strength and thus contribute to resist lateral forces  

   (wind, earthquake) 

 

Most walls in historical construction are load bearing ones. In some 

structural systems non-load-bearing walls can exist. Even in these cases, 

they are normally still structural members providing buttressing or in-plane 

strength (shear wall).  

 

Some historical walls were provided with specific seismic resistant details, 

as iron connections between cramps (Greece) or geometric devices (Egypt, 

Peru) 
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58 

WALL TYPES 

 

 

 

Rubble megalithic 

masonry with large 

irregular stones. 

Polygonal stone 

masonry. 
Square blocs  

placed w/o pattern. 

Square blocs placed 

with a defined pattern. 

Opus squadratum Opus cementitium. Opus lateritium. Opus reticulatum. 
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Three-leaf wall, used 

since the Roman period 

on. Cut stone or brick 

external leaves are filled 

with internal rubble 

masonry. Adequate 

connection 

(interlocking) between 

the exterior and interior 

leaves is essential to 

avoid leaf separation in 

the long term. 

WALL TYPES –HETEROGENEOUS WALLS 
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COLUMNS AND PIERS 

 
Columns are vertical members to support 

concentrated loads transferred by arches 

or beam systems (architraves). Contrary to 

the walls, they hardly contribute to resists 

horizontal forces. 

 

Large columns are normally built of large 

blocks (drums) or  masonry. In some 

cases,  full columns had been carved from 

a single rock block. 

 

Columns are normally complemented with 

a basement and a capital.  Some of them 

are tapered. 
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MEDIEVAL MASONRY PIERS 

Masonry piers normally combine an 

exterior leaf of regular masonry with 

an interior core of stone or rubble 

filling. 

 

In some cases, they are entirely 

composed  of large blocks 

adequately interlocked, with no 

differentiated core.  
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ARCHES AND VAULTS 
 

 Arch and vaults construction provided, historically, the possibility of larger 
spans with limited amount of material, compared with more primitive 
technologies (as post-and-lintel construction).  
 
 
However, arch and vault construction faced significant challenges, and 
builders struggled across history to overcome them. These challenges are: 
 
• The need for centerings and forms (with significant consumption of 

material and work) 
 

• Or, the search for arch shapes and techniques causing limited centering 
needs.  
 

• The identification of shapes adequate to resistance  
 

• The need for enough buttressing to counteract the lateral thrust caused 
by the arches 
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Cross vault (Roman type) or 
groin (formed from intersection of 
two barrel vaults ) 
 

 

 

 

 

 

 

 

Gothic cross vault 
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Penetrated barrel vault or 
underpitch (a barrel vault with small 
perpendicular vaults underneath)  
 

 

 

 

 

 
Fan vault (a group of ribs springing 
from a point to form a vault) 
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STRUCTURAL SYSTEMS 

 

Historically, masonry structures have been conceived upon two 

alternatives: 

 

Lintel construction (inspired by timber construction?) is based on the 

combination of pillars/walls and lintels, the latter consisting of 

monolithic stones able to resist some flexural forces. Their capacity is 

owed to stone flexural (tensile) strength.  

 

Arched or vaulted construction (inspired by natural arches and caves?) , 

where the design is conceived so that stability is possible by only 

activating compression forces.  Their strength stems from geometry. 
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Lintel construction – Greek temples are  possibly inspired by primitive 

timber structures. They seem to retain the organization and resisting 

principles of timber-based construction.  
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Do lintels in Greek temples work, in fact, as jack arches?  This seems 

plausible as many lintels show cracks at mid-span (hinges) and still keep 

stable. The arch-like work and the lateral thrusts is activated as soon as 

the lintel cracks due to initial bending forces.  



Institute for Sustainability and Innovation in Structural Engineering 

68 | Local and global models for seismic safety assessment Paulo B. Lourenço 

…and more recent architectural approaches as Mongol (Mughal) 

construction in India (Red Fort, Agra, built 1565-1573 AD.).  
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Fatehpur Sikri, built ca. 1569,  obviously inspired by (and even mimicking) 

wooden construction arrangement and details 
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Lintel construction is confined to very small spans due to the need to limit 

the bending forces experienced by the stone. 

 

In fact, the stone‟s tensile strength is a very delicate property which can 

easily deteriorate due to a variety of actions (earthquake, thermal 

variations, settlements, chemical attack, erosion…) 

 

Weren‟t for the possibility of working as jack-arches (and the supporting 

structure being robust enough as to counteract the resulting horizontal 

thrusts), almost all post-and-lintel ancient structures would have 

collapsed.  
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71 

VAULTED CONSTRUCTION 
A second possibility, suggested by nature itself, comes after the use of shapes 

which are stable by only mobilizing compressive forces – arches and vaults. 

Used already by ancient civilizations in Mesopotamia, it was intensively 

exploited by Romans and has prevailed as the main roofing approach for large 

constructions up to the 19th-20th c. technological revolution.   
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FALSE VAULTING 

True vaulting poses significant construction challenges, as the need for expensive 

and time-demanding shores and centering. Some cultures  (Greek Mycenaean, 

Sumerian, Sasanian Persia, Pre-Columbian Mesoamerican, Khmer) skipped these 

difficulties by resorting to false vaults and arches (or corbel, corbelled -) built as 

sequence of self-stable cantilevers. The technique affords only very limited spans to 

the cost of a significant rise and high consumption of material. 

 

 

 

 

 

 

 

 

Lions‟s Gate, Citadel of Mycenae, Greece 2nd millennium BC 
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Tomb of Clymnestra (above) and Treasury of Atreus, below, typical Tholoi tombs of 

Mycenae, 2nd millennium BC 

http://upload.wikimedia.org/wikipedia/commons/1/16/Atreus-2.jpg
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True arch and vault construction has been achieved by the following means 

 

 Using earth or rubble fillings and mounds instead of centering  

 Use true centering and shores (normally made of wood) 

 Using smart construction procedures avoiding or reducing the need for 

centering 
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ROMAN CONSTRUCTION 

 

Romans used intensively the possibilities of arches and vaults. Their more 

outstanding constructions included large-span concrete roofs (up to 20 

m for vaults and 40 m for domes) using a variety of  solutions (barrel 

vaults, cross-vaults and domes) 

 

A large part of their construction was in pozzolanic concrete, which was 

easily adaptable to curved shapes. However, the resulting vaults were 

very delicate and difficult to repair. Unreinforced concrete cracking 

would result in very inconvenient aesthetic, maintenance and, 

eventually, structural problems. 

 

To avoid cracking in concrete vaults and domes, these had to be 

supported on massive walls and foundations. 
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Pantheon, dating from c. 125 A.D., consisting of a dome of 43.3 of diameter, 43,3 m 

high at the oculus,  over a 6.4 m thick drum wall.  
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Section and plan                                                                   Relieving arches (above) and  

                                                                                              centering hypothesis  (below)  
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The loss of the stone veneer permits recognize the concrete cylinder as an organized 

structure including a system of brick relieving arches.      
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System of brick masonry relieving arches embedded in the cylindrical walls      
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GOTHIC CONSTRUCTION 

 

Gothic construction, made possible by the advent of more sophisticated 

construction techniques, produces truly skeletal structures composed of 

arches, nerves, flying- arches, piers and buttresses. No structural 2D 

members exist, except for the membranes spanning across the nervures.  

All typical Gothic structural members had been already used by former 

architectural cultures (flying arches by Byzantium, cross-vaults by Rome 

and former Medieval architecture...). The specificity of Gothic architecture 

is in the way these members are combined to lay-out a pure skeletal 

structure where forces are adequately balanced and neatly channelled 

towards the buttresses and foundation with close to minimum material 

consumption. 

This accurate adjustment affords for significant material saving, structural 

slenderness and clearance (compared with other architectural 

approaches).  

 

  



Institute for Sustainability and Innovation in Structural Engineering 

81 | Local and global models for seismic safety assessment Paulo B. Lourenço 

Transverse section of Amiens 

Cathedral according to Viollet-

le-Duc  
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French High Gothic outstanding examples: Transverse section of Amiens 

cathedral (begun 1220) and Beauvais cathedral (choir, begun 1225). Maximum 

vault‟s height of 42 and 48 m).   
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The success of Gothic architecture 

owes very much to the Gothic 

cross vault, whose construction 

only required to use centering for 

the arches and nervures. 

The Gothic cross-vault does not 

comply with any mathematical 

equation – it is a free shape 

resulting from the construction 

procedure.  

As opposite to domes (without 

confinement), Gothic vaults do not 

systematically crack. 
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The fact that the structure reaches 

equilibrium (and thrust balance) only in its 

complete configuration, may have generated 

significant difficulties during the 

construction.   
 

Left: Unlikely provisory construction arrangement 

suggested by Viollet-le-Duc. 

 

Delicate construction stages might have had to be 

overcome. Significant temporary structures or 

devices may have been needed. Some existing 

damage and deformation (as in Mallorca Cathedral) 

may have been caused during the construction 

process.  

In many cases (Barcelona Cathedral...) the Gothic 

structure replaced a former Romanesque church 

whose remaining walls, while gradually 

demolished, were used as provisory buttresses.   
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Mallorca Cathedral (14-15th c.) was considered by Robert Mark as the epitome of Gothic 

construction due to its unique combination of height over ground (44 m) and clearance (the 

central nave vaults span 19,4m). The extreme slenderness of the piers (height/diameter = 

1:13-1:15) can only be compared with that of Jeronimos Church in Lisbon.    
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THE CONSTRUCTION OF DOMES IN EUROPE DURING 15-16th c. 

 

Renaissance in Europe brought a recovered interest in ancient classical 

(Greek and Roman) architecture. The dome was recovered as 

outstanding roofing solution for emblematic buildings, while Gothic 

architecture was regarded as contrary to classic conception and even 

despised. 

In spite of the philosophical rejection of Gothic architecture, many Gothic 

architectural resources prevailed due to their rationality and optimality. 

In fact, Renaissance architecture constitutes a synthesis of classic and 

Gothic, rather than a mere recovery of the first.  

This synthesis can be clearly identified in Brunelleschi‟s dome in Florence, 

which includes remarkable Gothic treats such as the pointed geometry 

(to reduce the horizontal thrust) and the ribbed (and certainly complex) 

membrane supported on meridian arches. These combine with the 

concept and dimensions of the dome itself, taken from the Pantheon.  
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Filippo Brunelleschi‟s ingenuity 

produced one of the most complex 

structures ever built and still not totally 

understood – the dome of Santa Maria 

del Fiore in Florence (built 1419-1436, 

lantern built 1445-1461) 

 

The purpose – allowing the construction 

of a Pantheon-like dome over an existing  

masonry structure 54 high, without 

resorting to any  centering or forms – 

was successfully  accomplished. The 

dome has a diameter of 43,6 m and a rise 

(interior) of 33 m. The total weight of the 

dome is of 37.000 metric tons (!). 
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Complex building features Today‟s cracked condition 
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In 1743, Giovanni Poleni, an Italian 

mathematician, proved Saint Peter‟s 

dome full adequate design by applying 

the catenary principle.   

Poleni showed that the radial cracks 

(existing in almost all domes) were by 

no means connected to problems 

associated to collapse.  

However, Poleni proposed to 

strengthen the dome by placing a set of 

iron rings. The rings, six in all, were 

fixed on the dome between 1743 and 

1748. 
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Evolution of Persian dome 

construction, and the interest for 

complex and appealing external 

shapes, laid to the conception of 

sophisticated systems consisting on 

timber structures (providing the 

external volume) supported over 

pitched structural inner domes.  
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Hooke‟s structural insights lead to a new and more economical way of producing an emblematic 

dome: the true structure consists of an almost conical dome (designed by Hooke), whose shape 

is made adequate by the above 8500 kN lantern. Lighter domes, with little structural role, are 

below and above the cone (the latter as a wooden structure supported on the dome).   

 



 המועצה לשימור

 אתרי מורשת בישראל

Models for 

Masonry 

Structures 
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What is masonry? 
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What is masonry? 

Masonry can be defined as a material with visible internal structure 
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Why is this relevant for mechanics? 

Shear testing of 

stone joints 

Diagrama Força de Corte (N) vs  Delocamento Horizontal

Provete P12_2
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Why is this relevant for mechanics? 

Stone walls 

Collapse Mechanism and Strength 

Regular – tanf = 0.4 

Irregular – tanf = 0.3 

Rubble – tanf = 0.2 
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Modeling masonry – Material Level 

MASONRY SAMPLE MICRO-MODELING MACRO-MODELING 

UNIT 

MORTAR 

“UNIT” COMPOSITE 

UNIT/MORTAR 

INTERFACE “JOINT” 

 Sophisticated models require advanced material characterization. 

Much experience had been gained in the last decade (see paper) 
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Massa M2 

Massa M1 

 Elementos rígidos 

Beam elements 

model 

3-degree of 

freedom model 

Rigid Elements 

Mass M2 

Mass M1 

STRUCTURAL COMPONENT MODELS 

Macro-block 

model 

Modeling Approaches – Structural Level (I) 
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STRUCTURAL MACRO-MODELING / FINITE ELEMENT METHOD 

Shear wall 

Wall with out of plane behavior 

Church Settlements 

Modeling Approaches – Structural Level (II) 
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STRUCTURAL MICRO-MODELING / FEM, DEM, LIMIT ANALYSIS 

Shear wall 

(in plane behavior) 

 
Wall with 

out of plane behavior 

Modeling Approaches – Structural Level (III) 
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Macro-Block Analysis 
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Diagonal tension 

Shear 

Collapse Mechanisms (I) 



Institute for Sustainability and Innovation in Structural Engineering 

103 | Local and global models for seismic safety assessment Paulo B. Lourenço 

Overturning 

Overturning, limited due to the 

connection with transverse walls 

Collapse Mechanisms (II) 
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In plane Out of plane 

External walls 

Internal walls 

Abacus for buildings 
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The Kinematic Approach 
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 The kinematic method allows to determine the linear capacity curve of the 

element under consideration 

 

 

 

 

 

 

 

where: 

   α0 is the coefficient that actives the mechanism 

   dk is the displacement of the control point k (e.g. the centre of mass) 

   dk0 is the displacement of the control point k, in which the multiplication factor   

of the horizontal forces is equal to zero (α=0) 

The Linear Capacity Curve (I) 
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 The capacity curve is converted in the capacity curve of an equivalent  

SDOF system using the equations: 

 

 

   

Participating mass 

Spectral acceleration 

activating the mechanism 

Fraction of the participating 

mass 

where: 

Displacement of the 

equivalent system 

The Linear Capacity Curve (II) 
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 The hypotheses of “hinging” limit analysis are usually considered: 

      - Masonry withstand no tensile stresses 

      - No sliding present in the mechanism 

      - Compressive strength is infinite 

 

 But it is possible to consider more realistic hypothesis: 

 - Friction sliding 

 - Connections, even if weak, between transverse and longitudinal walls 

 - Ties 

 - Limited compressive strength, with an internal position of the hinge 

 - Walls with weak connection between leaves 

The Linear Capacity Curve (III) 
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 The a0 coefficient is obtained from the Principle of Virtual Work (PVW) 

 

 Applying a virtual rotation, the system is in equilibrium if the work due to 

external forces is equal to the work due to internal forces: 

 

                                                       Wext = W int 

 

 

 

   

The Linear Capacity Curve (IV) 
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The Linear Capacity Curve (V) 

 

 If only a rotation occurs, the PVW is equal to the balance of the vertical and 

horizontal forces acting around the hinging point 
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The Linear Capacity Curve (VI) 

 

 Displacement dk,0 is determined with the evolution of the mechanism, which in 

fact provides a non-linear relation 

 

 

 

 

 

 

 

                                                     α0 > α1 > α2 

                                                          α2=0 
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DAMAGE LIMIT STATE: The safety verification with reference to the DLS is 

satisfied when the spectral acceleration for the activation of the 

mechanism a*0 is greater than the acceleration of the elastic spectrum, 

evaluated for T=0, opportunely amplified in order to consider the portion 

of the building interested by the kinematic mechanism 

 

 

 

 

   
where: 

   Z is the height of the center of the masses that generate horizontal 

forces on the elements of the kinematic chain, because they are not 

effectively transmitted to other parts of the buildings 

   H is the height of the whole structure 

    

Safety Verifications (OPCM 3274 / OPCM 3431) 
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 In case of local mechanisms, the damage limit state corresponds to the 

arising of cracking that interests not the whole but only a part of the 

structure. Therefore, in case of existing masonry buildings, even if the 

fulfillment of this limit is desirable, its verification is not required. 

 

    

ULTIMATE LIMIT STATE: The ultimate limit state verification of the local 

mechanism is instead MANDATORY, in order to assure the safety with 

respect of the collapse. This verification can be developed through the 

following criteria: 

 

- Simplified verification with structure factor q (linear kinematic analysis) 

- Verification through capacity spectrum (non-linear kinematic analysis) 

Safety Verifications (OPCM 3274 / OPCM 3431) 
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Simplified verification with structure factor q (linear kinematic analysis) 
 

The verification is satisfied if: 

 

 

where q is the structure factor assumed equivalent to 2 

 

Verification through capacity spectrum (non-linear kinematic analysis) 
 

First of all it is necessary to define the spectral displacement d*u 

 

                                                          0.4d*0 

d*u= min      deslocamento correspondente à instabilidade local dos elementos  

                    estruturais 

 

                                 

Safety Verifications (OPCM 3274 / OPCM 3431) 
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Verification through capacity spectrum (non-linear kinematic analysis) 
 

The verification is satisfied if: 

 

 

where: 

 d*u represents the ultimate displacement capacity of the system 

 Δd is the displacement demand of the earthquake, evaluated through the 

spectrum defined similarly to the one utilized for the verification of the non 

structural elements in correspondence to the secant period Ts: 

 

 
 

 

                                 

Safety Verifications (OPCM 3274 / OPCM 3431) 
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Verification through capacity spectrum (non-linear kinematic analysis) 
 

Parameters a*s and d*s are identified on the capacity curve in the following way 

 
 

 

                                 

Safety Verifications (OPCM 3274 / OPCM 3431) 
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Verification through capacity spectrum (non-linear kinematic analysis) 
 

The displacement Δd(Ts) required by the earthquake is determined as: 

 

 

 

 

 

 

 

where: 

   T1 is the first period of the structure in the direction being considered 

 

 
 

 

                                 

Safety Verifications (OPCM 3274 / OPCM 3431) 
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Verification through capacity spectrum (non-linear kinematic analysis) 
 

Graphic interpretation of the ADSR diagram (acceleration-displacement) 

 
 

 

                                 

Ts 

Safety Verifications (OPCM 3274 / OPCM 3431) 
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Examples #1: Overturning of a frontispiece 
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Examples #1: Overturning of a frontispiece 
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Actions 
 

Deadweight from roof: 1.4 KN/m2 

Specify weight for masonry: 20 KN/m3 

Then, P=26 KN 

P’=1/2 of the weight over the ridge, P’ = 39 KN 

Position of the wall weight: 1/3 of the height 
 

Calculation of a0  (equilibrium) 

 

 

 

 
 

 

                                 

Examples #1: Overturning of a frontispiece 
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Calculation of a0 using the PVW 

 

 

 

 

 

 

 

 

 
 

Participating mass M* 

Using Dx1 as control displacement, DX0=Dx1/3 

 

 

 

 

 

 
 

 

Examples #1: Overturning of a frontispiece 
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Fraction of participating mass e* 

 

 

 

 

 
 

Spectral acceleration for mechanism activation a*0 

 

 

 

 

 
 

Safety verification using linear analysis (ULS) 
 

 

                                 

Examples #1: Overturning of a frontispiece 
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Safety verification using linear analysis (ULS) 

 

                                         with q = 2.0 

 

 

                           where: Z = 7,02 = (W.hw+P’.hP’)/(W+P’) 

                                       H = 7.5 (total building height) 

 

 

 

       Safety is verified if: 

                                 

Examples #1: Overturning of a frontispiece 
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Verification using the capacity spectrum (ULS) 
 

Static relation a-Dx1 (a-dk) is determined for 

displacements different from zero. All forces are 

proportional to the weight, and the relation a-dk can be 

assumed linear: 

 

 

Displacement dk0 is calculated for α=0 

 

 

 

 

 

 

 
 

 

Examples #1: Overturning of a frontispiece 
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Equivalent 1 dof system displacement 
 

 

 

 

 

 

 

 
 

 

                                 

Examples #1: Overturning of a frontispiece 
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Examples #1: Overturning of a frontispiece 
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Assuming a fundamental period for the building equal to 0.2 s (T1 = 0.2 s): 

 

                                           Ts = 0.92 > 1.5 T1 = 0.3s 

 

Also assuming agS = 0.2g = 1.962 m/s2, the demand in displacement is given 

by: 

 

 
 

                                 

Examples #1: Overturning of a frontispiece 
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Location: Guimarães 

Style: hybrid with classic, gothic, renaissance and 

     romantic elements 

Material: granite ashlar masonry 

Examples #2:  Full Church 
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 Cracking Pattern 

Y Y’ 

Corte YY’ 

Examples #2:  Full Church 
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 Cracking pattern 

Main façade 

Examples #2:  Full Church 
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 Cracking pattern 

Views 

Examples #2:  Full Church 
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 Geotechnical profiles 

Examples #2:  Full Church 
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 FEM Model 

Examples #2:  Full Church 
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 Soil structure-interaction 

Examples #2:  Full Churc 
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 Four possible mechanisms 

α0 0.186 

M* 4343.7 KN 

e* 0.947 m/s2 

Capacity a0* 0.197 g 

Demand a0* 0.063 g 

Safety factor 3.13 

Examples #2:  Full Church 
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α0 0.184 

M* 4254.5 KN 

e* 0.953 m/s2 

Capacity a0* 0.193 g 

Demand a0* 0.086 g 

Safety Factor 2.24 

Examples #2:  Full Church 
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α0 0.164 

M* 8830.1 KN 

e* 0.968 m/s2 

Capacity a0* 0.169 g 

Demand a0* 0.087 g 

Safety Factor 1.94 

Examples #2:  Full Church 
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α0 0.205 

M* 339.1 KN 

e* 0.982 m/s2 

Capacity a0* 0.208 g 

Demand a0* 0.123 g 

Safety Factor 1.69 

Examples #2:  Full Church 
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Método cinemático 

Exemplo 2 – Santuário de SãoTorcato 

Projecto de reforço 
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Simple Indicators for Seismic Performance 
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Idea: To have simple indicators to provide a first screen 

         at territorial level 

Different structural 

arrnagements 



Institute for Sustainability and Innovation in Structural Engineering 

143 | Local and global models for seismic safety assessment Paulo B. Lourenço 

European sample with 

44 monuments 

Portuguese sample 

with 55 monuments 

10
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A
ll 

in
d

e
x
e

s
 1

  

Threshold

Index 1 (X dir)

Results 

Idea: To have simple indicators to provide a first screen 
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Index 1: In plan area 

 This index provides a relation between the shear walls in each direction and 

the total area of the building. Only with a thickness larger than 0.35 m and 

with a ratio between the height and the width smaller than nine are 

considered as shear resistant 

 

 The index is given by 

  1,i = Awi / S 

 where Awi is the in plan are of the walls 

 in direction “i” and S is the in plan area 

 of the building 

 

 The recommended value to trigger the need 

 of more advanced studies is given by: 

 1,i < 0.03 + 0.28 PGA / g 
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Index 2: Ratio Between the Weight and the In Plan Area 

 The index is given by 

  2,i = Awi / G 

 where G is the vertical quasi-permanent action 

 

 This index measures the are per unit of  

 weight, meaning that the building height 

 (or mass) are considered. An important 

 disadvantage is that the index has  

 a dimension 

 

 The recommended value to trigger the need 

 of more advanced studies is given by: 

 2,i < 0.35 + 8.5 PGA / g [m2/MN] 

  

 


1

PGA / g

0.25

0.10

"S
A

FE"

"U
N

SA
FE"

2.5

0.25

"U
N

SA
FE"

"S
A

FE"

PGA / g

2
 

3

1.0

PGA / g

"SAFE"

"UNSAFE"

0.3x0.25

1.00.03



Institute for Sustainability and Innovation in Structural Engineering 

146 | Local and global models for seismic safety assessment Paulo B. Lourenço 

Index 3: Base Shear Ratio 

 The base shear VSd can be estimated using an equivalent “static” analysis 

applying horizontal forces given by (β.G), where β is a static coefficient 

related with the design acceleration 

 

 The index is given by 

  3,i = VRd,i / VSd = Awi / Aw  [tanf + fvk0 / (   h )] / β 

 where Aw is the total in plan area of the walls, 

 h is the average height of the building,  

  is the specific weight, f is the friction 

 angle (0.4) and fvk0 is the cohesion (0.05N/mm2) 

 

 The recommended value to trigger the need 

 of more advanced studies is given by:  

 3,i < 1.0 
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Lethes Theatre, Faro 

M1 M4 
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Holy Christ Church, Outeiro 

M1 

0.100 

0.075 

0.050 

0.025 

0.000 
0 1 2 3 4 5 6 7 

Time (s) 

Opening (m) 
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São Torcato Sanctuary, São Torcato 

M1 M4 
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Saint Francis Church, Horta, Azores 

M1 M4 
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Donim Bridge, Donim 

M1 M4 
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Typical downtown construction of Lisbon 

M1 M4 
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Monastery of Jerónimos, Lisbon 
Full model with 135.000 dof 

 

Pushover analysis 

Deformed mesh 

Details 
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Modeling 2.5D vs 3D 

Evaluation of the modeling strategy 

Refined model 

 
f1 = 1.79 

 
f2 = 2.26 

 
f4 = 3.34 

 
f5 = 3.78 

 
f7 = 4.70 

 
f8 = 5.41 

 Simplified model 

 
f1 = 1.61 

 
f2 = 2.41 

 
f4 = 3.25 

 
f7 = 3.98 

 
f9 = 4.39 

 
f12 = 5.31 

 

Comparison of first two modal shapes 

Comparison of first six global modal frequencies 
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Material vs. Model Properties 

Beam FEM 
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Application #1: Famagusta, Cyprus 

 Complex political situation 

 Advanced deterioration and abandonment, with inclusion in the 100 

Most Endangered Sites (WMF, 2008) 

 The old city has many churches and an impressive wall 
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Local seismicity 

 Complex tectonic area, in the intersection of three plates: African, 

Eurasian and Arabic 

 Alpine-Himalaya region is the 2nd most active in the world, with 15% 

of the world activity 

Strong earthquakes between1896 and 2000 

 Cyprus had 16 large 

earthquakes in the last 2000 

years (intensity VIII or more) 

 The city was destroyed in the 

1st and 4th centuries. Much 

damage in 1924 e 1941 

(earthquakes with Mw > 6.0) 
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St. George of the Latins 
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Current condition: (a) garbage and misuse; (b) stone deterioration 
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Current condition: (a) loose stone elements; (b) corrosion in r/c lintel 
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Current condition: (a) deficient buttresses; (b) tower rotation 
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Conservation project for 3 churches 
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(1) Gate to prevent access; (2) joint repointing; (3) conservation; (4) frescoes and engravings 

protection; (5) consolidation of window tracery; (6) vault consolidation; (7) arch consolidation;    

(8) cleaning; (9) flying arch consolidation 



Institute for Sustainability and Innovation in Structural Engineering 

164 | Local and global models for seismic safety assessment Paulo B. Lourenço 

In situ testing 
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Seismic safety assessment 
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FE Model, frequencies 

and mode shapes 

Mode 

Shape 

fEXP 

[Hz] 

fNUM 

[Hz] 

Error 

[%] 

MAC 

[%] 

1st 2.57 2.43 -5.45 94.2 

2nd 3.14 3.19 1.59 49.8 

3rd 3.95 3.95 0.00 40.8 

4th 5.26 5.29 0.57 76.5 

+x -y 
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Application #2: Monastery of Jerónimos, Lisbon 

Nave and columns identified separately (columns much larger E) 

P2 P3 P4 P5 P6

P29 P15 P14 P13 P12 P28

P21 P20 P19

P30 P22 P24 P25 P26 P27

P10 P9 P8

P16 P17 P18

P23

P7P11

P1
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Collapses / Safety Assessment 

Mode 1num/1exp (3.8/3.7 Hz) Mode 4num/2exp (5.3/5.1 Hz) 
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Application #3: St. James Church, Christchurch, NZ 

Structure Damaged in the February 2011 Earthquake 
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Several cracks 
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Several materials 
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Mode shapes of isolated elements (1st and 2nd mode) 
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Case Study #4: Mogadouro Tower 

 Built after 1559. Rectangular section 4.7 × 4.5 m2 and height of 20.4 m. 

Large granite stones in the corners and rubble stone with thick lime mortar 

joints in the central part of the walls. Thickness of walls is about 1.0 m.  

 In 2004, the tower was severely damaged, with large cracks, material 

deterioration and loss of material in some parts. Conservation works carried 

out in 2005 reinstated the tower safety, including lime grout injection for the 

walls, filling of voids and losses, and installation of steel belt at two levels. 

Before After 
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Case Study #4: Mogadouro Tower 

Dynamic tests and example of sensor locations 
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Case Study #4: Mogadouro Tower 

Dynamic response before and after the conservation works 
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Case Study #4: Mogadouro Tower 

Experimental mode shapes 
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Case Study #4: Mogadouro Tower 

Updating parameters 
(shell model with bad results. 

Foundation was needed) 

Numerical results 
(average error in frequency of 2% and average MAC of 0.98) 
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Case Study #4: Mogadouro Tower 

Dynamic monitoring 

  Measurements between April 

2006 and December 2007 

 

No triggering (regular 

intervals) 

 

Automatic modal estimation 

based on SSI 

 

 Procedures to avoid 

unrealistic modes 
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Case Study #4: Mogadouro Tower 

Results 

(4% change in frequency in the 

beginning of the raining season) 
Results 
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Conclusions 

 
 Conservation Engineering is a complex and exciting field. 

Specific tools and knowledge for the discipline are available 

 

 Time shows that many historical masonry constructions 

collapsed due to extreme events (e.g. earthquakes). Fatigue 

and strength degradation, accumulated damage due to 

traffic, wind and temperature loads, soil settlements and the 

lack of structural understanding of the original builders are 

high risk factors for cultural heritage buildings. 

 

 Structural analysis and safety assessment of historical 

masonry buildings are necessary. Structural modeling play a 

key role here.  
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